Environmental Protection Agency

- (3) Method 2 shall be used to determine the volumetric flow rate (Q_{sd}) of the effluent gas. The measurement site shall be the same as for the NO $_{\!X}$ sample. A velocity traverse shall be made once per run within the hour that the NO $_{\!X}$ samples are taken.
- (4) The methods of \$60.73(c) shall be used to determine the production rate (P) of 100 percent nitric acid for each run. Material balance over the production system shall be used to confirm the production rate.
- (c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:
- (1) For Method 7, Method 7A, 7B, 7C, or 7D may be used. If Method 7C or 7D is used, the sampling time shall be at least 1 hour.
- (d) The owner or operator shall use the procedure in §60.73(b) to determine the conversion factor for converting the monitoring data to the units of the standard.

 $[54 \; \mathrm{FR} \; 6666, \; \mathrm{Feb.} \; 14, \; 1989]$

Subpart Ga—Standards of Performance for Nitric Acid Plants for Which Construction, Reconstruction, or Modification Commenced After October 14, 2011

SOURCE: 77 FR 48445, Aug. 14, 2012, unless otherwise noted.

§ 60.70a Applicability and designation of affected facility.

- (a) The provisions of this subpart are applicable to each nitric acid production unit, which is the affected facility.
- (b) This subpart applies to any nitric acid production unit that commences construction or modification after October 14, 2011.

§ 60.71a Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

Affirmative defense means, in the context of an enforcement proceeding, a response or defense put forward by a defendant, regarding which the defendant has the burden of proof, and the

merits of which are independently and objectively evaluated in a judicial or administrative proceeding.

Monitoring system malfunction means a sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring system failures that are caused in part by poor maintenance or careless operation are not malfunctions. You are required to implement monitoring system repairs in response to monitoring system malfunctions or out-of-control periods, and to return the monitoring system to operation as expeditiously as practicable.

Nitric acid production unit means any facility producing weak nitric acid by either the pressure or atmospheric pressure process.

Operating day means a 24-hour period beginning at 12:00 a.m. during which the nitric acid production unit operated at any time during this period.

Weak nitric acid means acid which is 30 to 70 percent in strength.

§60.72a Standards.

Nitrogen oxides. On and after the date on which the performance test required to be conducted by $\S60.73a(e)$ is completed, you may not discharge into the atmosphere from any affected facility any gases which contain NO_X , expressed as NO_2 , in excess of 0.50 pounds (lb) per ton of nitric acid produced, as a 30-day emission rate calculated based on 30 consecutive operating days, the production being expressed as 100 percent nitric acid. The emission standard applies at all times.

§ 60.73a Emissions testing and monitoring.

(a) General emissions monitoring requirements. You must install and operate a NO $_{\rm X}$ concentration (ppmv) continuous emissions monitoring system (CEMS). You must also install and operate a stack gas flow rate monitoring system. With measurements of stack gas NO $_{\rm X}$ concentration and stack gas flow rate, you will determine hourly NO $_{\rm X}$ emissions rate (e.g., lb/hr) and with measured data of the hourly nitric acid production (tons), calculate emissions in units of the applicable emissions limit (lb/ton of 100 percent acid produced). You must operate the

§60.73a

monitoring system and report emissions during all operating periods including unit startup and shutdown, and malfunction.

(b) Nitrogen oxides concentration continuous emissions monitoring system. (1) You must install, calibrate, maintain, and operate a CEMS for measuring and recording the concentration of NO_X emissions in accordance with the provisions of $\S 60.13$ and Performance Specification 2 of appendix B and Procedure 1 of appendix F of this part. You must use cylinder gas audits to fulfill the quarterly auditing requirement at section 5.1 of Procedure 1 of appendix F of this part for the NO_X concentration CEMS.

(2) For the NO_X concentration CEMS, use a span value, as defined in Performance Specification 2, section 3.11, of appendix B of this part, of 500 ppmv (as NO_2). If you emit NO_X at concentrations higher than 600 ppmv (e.g., during startup or shutdown periods), you must apply a second CEMS or dual range CEMS and a second span value equal to 125 percent of the maximum estimated NO_X emission concentration to apply to the second CEMS or to the higher of the dual analyzer ranges during such periods.

(3) For conducting the relative accuracy test audits, per Performance Specification 2, section 8.4, of appendix B of this part and Procedure 1, section 5.1.1, of appendix F of this part, use either EPA Reference Method 7, 7A, 7C, 7D, or 7E of Appendix A-4 of this part; EPA Reference Method 320 of appendix A of part 63 of this chapter; or ASTM D6348-03 (incorporated by reference, §60.17). To verify the operation of the second CEMS or the higher range of a dual analyzer CEMS described in paragraph (b)(2) of this section, you need not conduct a relative accuracy test audit but only the calibration drift test initially (found in Performance Specification 2, section 8.3.1, of appendix B of this part) and the cylinder gas audit thereafter (found in Procedure 1, section 5.1.2, of appendix F of this part).

(4) If you use EPA Reference Method 7E of appendix A-4 of this part, you must mitigate loss of NO₂ in water according to the requirements in paragraphs (b)(4)(i), (ii), or (iii) of this section and verify performance by con-

ducting the system bias checks required in EPA Reference Method 7E, section 8, of appendix A-4 of this part according to (b)(4)(iv) of this section, or follow the dynamic spike procedure according to paragraph (b)(4)(v) of this section.

(i) For a wet-basis measurement system, you must measure and report temperature of sample line and components (up to analyzer inlet) to demonstrate that the temperatures remain above the sample gas dew point at all times during the sampling.

(ii) You may use a dilution probe to reduce the dew point of the sample gas.

(iii) You may use a refrigerated-type condenser or similar device (e.g., permeation dryer) to remove condensate continuously from sample gas while maintaining minimal contact between condensate and sample gas.

(iv) If your analyzer measures nitric oxide (NO) and nitrogen dioxide (NO₂) separately, you must use both NO and NO₂ calibration gases. Otherwise, you must substitute NO₂ calibration gas for NO calibration gas in the performance of system bias checks.

(v) You must conduct dynamic spiking according to EPA Reference Method 7E, section 16.1, of appendix A-4 of this part using NO_2 as the spike gas.

- (5) Instead of a NO_X concentration CEMS meeting Performance Specification 2, you may apply an FTIR CEMS meeting the requirements of Performance Specification 15 of appendix B of this part to measure NO_X concentrations. Should you use an FTIR CEMS, you must replace the Relative Accuracy Test Audit requirements of Procedure 1 of appendix F of this part with the validation requirements and criteria of Performance Specification 15, sections 11.1.1 and 12.0, of appendix B of this part.
- (c) Determining NO_X mass emissions rate values. You must use the NO_X concentration CEMS, acid production, gas flow rate monitor and other monitoring data to calculate emissions data in units of the applicable limit (lb NO_X / ton of acid produced expressed as 100 percent nitric acid).
- (1) You must install, calibrate, maintain, and operate a CEMS for measuring and recording the stack gas flow rates to use in combination with data

from the CEMS for measuring emissions concentrations of NO_X to produce data in units of mass rate (e.g., lb/hr) of NO_X on an hourly basis. You will operate and certify the continuous emissions rate monitoring system (CERMS) in accordance with the provisions of $\S 60.13$ and Performance Specification of appendix B of this part. You must comply with the following provisions in (c)(1)(i) through (iii) of this section.

- (i) You must use a stack gas flow rate sensor with a full scale output of at least 125 percent of the maximum expected exhaust volumetric flow rate (see Performance Specification 6, section 8, of appendix B of this part).
- (ii) For conducting the relative accuracy test audits, per Performance Specification 6, section 8.2 of appendix B of this part and Procedure 1, section 5.1.1, of appendix F of this part, you must use either EPA Reference Method 2, 2F, or 2G of appendix A-4 of this part. You may also apply Method 2H in conjunction with other velocity measurements.
- (iii) You must verify that the CERMS complies with the quality assurance requirements in Procedure 1 of appendix F of this part. You must conduct relative accuracy testing to provide for calculating the relative accuracy for RATA and RAA determinations in units of lb/hour.
- (2) You must determine the nitric acid production parameters (production rate and concentration) by installing, calibrating, maintaining, and operating a permanent monitoring system (e.g., weigh scale, volume flow meter, mass flow meter, tank volume) to measure and record the weight rates of nitric acid produced in tons per hour. If your nitric acid production rate measurements are for periods longer than hourly (e.g., daily values), you will determine average hourly production values, tons acid/hr, by dividing the total acid production by the number of hours of process operation for the subject measurement period. You must comply with the following provisions (c)(2)(i) through (iv) of this section.
- (i) You must verify that each component of the monitoring system has an accuracy and precision of no more than ±5 percent of full scale.

- (ii) You must analyze product concentration via titration or by determining the temperature and specific gravity of the nitric acid. You may also use ASTM E1584-11 (incorporated by reference, see §60.17), for determining the concentration of nitric acid in percent. You must determine product concentration daily.
- (iii) You must use the acid concentration to express the nitric acid production as 100 percent nitric acid.
- (iv) You must record the nitric acid production, expressed as 100 percent nitric acid, and the hours of operation.
- (3) You must calculate hourly NO_X emissions rates in units of the standard (lb/ton acid) for each hour of process operation. For process operating periods for which there is little or no acid production (e.g., startup or shutdown), you must use the average hourly acid production rate determined from the data collected over the previous 30 days of normal acid production periods (see \$60.75a).
- (d) Continuous monitoring system. For each continuous monitoring system, including NO_X concentration measurement, volumetric flow rate measurement, and nitric acid production measurement equipment, you must meet the requirements in paragraphs (d)(1) through (3) of this section.
- (1) You must operate the monitoring system and collect data at all required intervals at all times the affected facility is operating except for periods of monitoring system malfunctions or out-of-control periods as defined in appendix F, sections 4 and 5, of this part, repairs associated with monitoring system malfunctions or out-of-control periods, and required monitoring system fullity assurance or quality control activities including, as applicable, calibration checks and required zero and span adjustments.
- (2) You may not use data recorded during monitoring system malfunctions or out-of-control periods, repairs associated with monitoring system malfunctions or out-of-control periods, or required monitoring system quality assurance or control activities in calculations used to report emissions or operating levels. You must use all the data collected during all other periods in calculating emissions and the status

§ 60.74a

of compliance with the applicable emissions limit in accordance with §60.72a(a).

(e) Initial performance testing. You must conduct an initial performance test to demonstrate compliance with the NO_X emissions limit under §60.72a(a) beginning in the calendar month following initial certification of the NO_{X} and flow rate monitoring CEMS. The initial performance test consists of collection of hourly NOx average concentration, mass flow rate recorded with the certified NO_X concentration and flow rate CEMS and the corresponding acid generation (tons) data for all of the hours of operation for the first 30 days beginning on the first day of the first month following completion of the CEMS installation and certification as described above. You must assure that the CERMS meets all of the data quality assurance requirements as per §60.13 and appendix F, Procedure 1, of this part and you must use the data from the CERMS for this compliance determination.

§ 60.74a Affirmative defense for violations of emission standards during malfunction.

In response to an action to enforce the standards set forth in §60.72a, you may assert an affirmative defense to a claim for civil penalties for violations of such standards that are caused by malfunction, as defined at 40 CFR 60.2. Appropriate penalties may be assessed, however, if you fail to meet your burden of proving all of the requirements in the affirmative defense. The affirmative defense shall not be available for claims for injunctive relief.

- (a) To establish the affirmative defense in any action to enforce such a standard, you must timely meet the reporting requirements in paragraph (b) of this section, and must prove by a preponderance of evidence that:
 - (1) The violation:
- (i) Was caused by a sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner; and
- (ii) Could not have been prevented through careful planning, proper design or better operation and maintenance practices; and

- (iii) Did not stem from any activity or event that could have been foreseen and avoided, or planned for; and
- (iv) Was not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and
- (2) Repairs were made as expeditiously as possible when a violation occurred. Off-shift and overtime labor were used, to the extent practicable to make these repairs; and
- (3) The frequency, amount, and duration of the violation (including any bypass) were minimized to the maximum extent practicable; and
- (4) If the violation resulted from a bypass of control equipment or a process, then the bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and
- (5) All possible steps were taken to minimize the impact of the violation on ambient air quality, the environment, and human health; and
- (6) All emissions monitoring and control systems were kept in operation if at all possible, consistent with safety and good air pollution control practices: and
- (7) All of the actions in response to the violation were documented by properly signed, contemporaneous operating logs; and
- (8) At all times, the affected facility was operated in a manner consistent with good practices for minimizing emissions; and
- (9) A written root cause analysis has been prepared, the purpose of which is to determine, correct, and eliminate the primary causes of the malfunction and the violation resulting from the malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering judgment, the amount of any emissions that were the result of the malfunction.
- (b) Report. The owner or operator seeking to assert an affirmative defense shall submit a written report to the Administrator with all necessary supporting documentation, that it has met the requirements set forth in paragraph (a) of this section. This affirmative defense report shall be included in the first periodic compliance, deviation

Environmental Protection Agency

report or excess emission report otherwise required after the initial occurrence of the violation of the relevant standard (which may be the end of any applicable averaging period). If such compliance, deviation report or excess emission report is due less than 45 days after the initial occurrence of the violation, the affirmative defense report may be included in the second compliance, deviation report or excess emission report due after the initial occurrence of the violation of the relevant standard.

$$E_{30} = k \frac{1}{n} \sum_{i=1}^{n} C_i Q_i / P_i$$

§ 60.75a Calculations.

- (a) You must calculate the 30 operating day rolling arithmetic average emissions rate in units of the applicable emissions standard (lb $NO_X/ton\ 100$ percent acid produced) at the end of each operating day using all of the quality assured hourly average CEMS data for the previous 30 operating days.
- (b) You must calculate the 30 operating day average emissions rate according to Equation 1:

(Eq. 1)

Where:

- $E_{30}=30$ operating day average emissions rate of $NO_{\rm X}$, lb $NO_{\rm X}$ /ton of 100 percent HNO_3 ;
- C_i = concentration of NO_X for hour i, ppmv; Q_i = volumetric flow rate of effluent gas for hour i, where C_i and Q_i are on the same basis (either wet or dry), scf/hr;
- P_i = total acid produced during production hour i, tons 100 percent HNO₃;
- k = conversion factor, 1.194 \times 10⁻⁷ for NO_X; and
- n = number of operating hours in the 30 operating day period, i.e., n is between 30 and 720

[77 FR 48445, Aug. 14, 2012; 79 FR 25681, May 6, 2014]

§60.76a Recordkeeping.

- (a) For the NO_X emissions rate, you must keep records for and results of the performance evaluations of the continuous emissions monitoring systems.
- (b) You must maintain records of the following information for each 30 operating day period:
 - (1) Hours of operation.
- (2) Production rate of nitric acid, expressed as 100 percent nitric acid.
- (3) 30 operating day average $NO_{\rm X}$ emissions rate values.
- (c) You must maintain records of the following time periods:

- (1) Times when you were not in compliance with the emissions standards.
- (2) Times when the pollutant concentration exceeded full span of the NO_X monitoring equipment.
- (3) Times when the volumetric flow rate exceeded the high value of the volumetric flow rate monitoring equipment.
- (d) You must maintain records of the reasons for any periods of noncompliance and description of corrective actions taken.
- (e) You must maintain records of any modifications to CEMS which could affect the ability of the CEMS to comply with applicable performance specifications.
- (f) For each malfunction, you must maintain records of the following information:
- (1) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
- (2) Records of actions taken during periods of malfunction to minimize emissions in accordance with §60.11(d), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment

§60.77a

to its normal or usual manner of operation.

§60.77a Reporting.

- (a) The performance test data from the initial and subsequent performance tests and from the performance evaluations of the continuous monitors must be submitted to the Administrator at the appropriate address as shown in 40 CFR 60.4.
- (b) The following information must be reported to the Administrator for each 30 operating day period where you were not in compliance with the emissions standard:
 - (1) Time period;
- (2) NO_X emission rates (lb/ton of acid produced);
- (3) Reasons for noncompliance with the emissions standard; and
- (4) Description of corrective actions taken.
- (c) You must also report the following whenever they occur:
- (1) Times when the pollutant concentration exceeded full span of the NO_X pollutant monitoring equipment.
- (2) Times when the volumetric flow rate exceeded the high value of the volumetric flow rate monitoring equipment.
- (d) You must report any modifications to CERMS which could affect the ability of the CERMS to comply with applicable performance specifications.
- (e) Within 60 days of completion of the relative accuracy test audit (RATA) required by this subpart, you must submit the data from that audit to EPA's WebFIRE database by using the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/ SSL/cdx/EPA Home.asp). You must submit performance test data in the file format generated through use of EPA's Electronic Reporting Tool (ERT) (http://www.epa.gov/ttn/chief/ert/

index.html). Only data collected using test methods listed on the ERT Web site are subject to this requirement for submitting reports electronically to WebFIRE. Owners or operators who claim that some of the information being submitted for performance tests is confidential business information (CBI) must submit a complete ERT file

including information claimed to be CBI on a compact disk or other commonly used electronic storage media (including, but not limited to, flash drives) by registered letter to EPA and the same ERT file with the CBI omitted to EPA via CDX as described earlier in this paragraph. Mark the compact disk or other commonly used electronic storage media clearly as CBI and mail to U.S. EPA/OAPQS/CORE CBI Office, Attention: WebFIRE Administrator, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. At the discretion of the delegated authority, you must also submit these reports to the delegated authority in the format specified by the delegated authority. You must submit the other information as required in the performance evaluation as described in §60.2 and as required in this chapter.

- (f) If a malfunction occurred during the reporting period, you must submit a report that contains the following:
- (1) The number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded.
- (2) A description of actions taken by an owner or operator during a malfunction of an affected facility to minimize emissions in accordance with §60.11(d), including actions taken to correct a malfunction.

Subpart H—Standards of Performance for Sulfuric Acid Plants

§ 60.80 Applicability and designation of affected facility.

- (a) The provisions of this subpart are applicable to each sulfuric acid production unit, which is the affected facility.
- (b) Any facility under paragraph (a) of this section that commences construction or modification after August 17, 1971, is subject to the requirements of this subpart.

 $[42~{\rm FR}~37936,~{\rm July}~25,~1977]$

§ 60.81 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.